
Application of GPGPU for Acceleration of Short DNA Sequence Alignment in
Unipro UGENE Project

Konstantin Okonechinkov*, German Grekhov, Konstantin Stepanyuk, Mikhail Fursov*
Unipro Center Of Information Technologies

{kokonech, ggrekhov, const24, mfursov} @unipro.ru

Address: Unipro, 6/1 Lavrentiev Avenue, 630090, Novosibirsk, Russia
Web site: http//ugene.unipro.ru
* Corresponding authors

Abstract

A dramatic increase of available sequencing datasets has resulted in the need of fast sequence
alignment methods. Plenty of novel methods were proposed to perform the fast alignment of
NGS data and some of them appeared to be rather effective, however a relatively small number
of existing alignment tools use Graphic Processing Units (GPUs) to speed up the alignment
procedure. Unfortunately these tools are available only as source code packages and have very
limited support for existing biological data formats.

In this report we describe UGENE Genome Aligner, an efficient GPU-accelerated tool for fast
short reads alignment. This tool is created as an extension to Unipro UGENE bioinformatics
toolkit, a popular open-source software package for molecular biologists. The performance
benchmarks of the Genome Aligner demonstrated a 2x speedup in comparison with existing
tools. The relative performance of the GPU-accelerated Genome Aligner was measured by
comparison with the CPU version of the algorithm. In result the GPU-optimized search
procedure showed ~6x speedup over the CPU version.

The GPU-accelerated Genome Aligner is fully integrated into UGENE framework and freely
available for download. The integration of the Genome Aligner allows it to be easily included
into any research pipeline provided by UGENE and makes it available “out-of-the-box” for end-
user without any additional efforts.

Introduction

A recent dramatic increase of available sequencing datasets catalyzed by improvements in high-
throughput sequencing technologies has resulted in the need of fast sequence alignment methods.
Moreover these methods should allow the rapid processing of billions of short DNA sequences
(short reads). The requirement of speed has become especially relevant in the context of whole
human genome resequencing.

Plenty of novel methods were proposed to perform the fast alignment of NGS data and some of
them appeared to be rather effective [2, 3, 4]. Since the alignment of short reads implies simple
data-parallelism many of available methods make use of multi-core and multiprocessor systems
to work faster [2, 5]. A relatively small number of existing alignment tools use Graphic
Processing Units (GPUs) to speed up the alignment procedure [6, 7]. Unfortunately these tools
are available only as source code packages and have very limited support for existing biological
data formats, which makes it difficult to use them in every-day research without additional
efforts.

In this paper we describe UGENE Genome Aligner, an efficient GPU-accelerated tool for fast
short reads alignment. This tool is created as an extension to Unipro UGENE bioinformatics
toolkit. Unipro UGENE [1] is an open-source software package for molecular biologists; its
main goal is to integrate popular bioinformatics tools and algorithms within a single flexible user
interface. UGENE includes multiple bioinformatics algorithms and supports a great majority of
biological data formats. Some of the included algorithms are optimized for a multi-core
environment and have GPU implementations. One great UGENE advantage is that the included
GPU-optimizations are available “out-of-the box” for the end-user and works on any system with
compatible hardware.

UGENE Genome Aligner Description

UGENE Genome Aligner uses a simple but efficient method for short reads alignment to a
reference sequence based on the application of suffix arrays [8]. The algorithm starts with
building a suffix array for the reference sequence. Similar to most of the existing aligners the
suffix array is used to find the seed portion of a short read. To optimize the searching, each
suffix array entry is encoded into a 64-bit integer value. The encoding uses 2 bits to represent
each DNA nucleotide and allows searching for seeds up to 31 base pair size. In the context of
existing NGS instruments this limitation doesn’t have much impact because of the typically
small size of short reads. During the alignment procedure each seed is encoded using the above-
mentioned technique and then a standard binary search procedure is applied to find the seed in
the suffix array. After the seed is found a refining comparison of a short read and corresponding
reference sequence region might be performed based on algorithm settings. The UGENE
Genome Aligner allows up to 3 mismatches in result alignment and can report either all available
short read alignments or only the best alignment in terms of mismatch count.

The proposed algorithm has several minor drawbacks such as limited ability to work with non-
standard nucleotide codes and small allowed substitution percentage. However despite its pitfalls
the Genome Aligner almost achieved the same efficiency as modern alignment tools. We tested
the accuracy and performance of the Genome Aligner against Bowtie (Table 1). In this test we
aligned approximately 2 million randomly selected short reads with size of 76 bp (experiment
ERR008366 from NCBI Short Reads Archive[12]) to the mouse genome chromosome 1
(GenbankID:AC157543.8). As a result Bowtie was faster than the Genome Aligner in the cases
of 0 and 1 permitted mismatch, but a performance boost was demonstrated by the Genome
Aligner in the case of 2 and 3 mismatches. Both tools demonstrated equal accuracy.

Number of
allowed

mismatches
Bowtie time, sec

Bowtie, number
of reads aligned

in percents

Genome Aligner
time, sec

Genome Aligner,
number of reads

aligned in
percents

0 4 4.75 15 4.75

1 6 7.04 18 7.04

2 38 8.55 30 8.55

3 135 9.74 60 9.74

Table 1 Performance comparison of Bowtie and UGENE Genome Aligner. Test machine configuration: Intel
Q9550 2.7 GHz, 8 Gb Ram. Bowtie is launched with the following parameters: -p 4 --norc -v X, the Genome

Aligner had the following parameters: --best --n-mis=X.

Parallel Binary Search on GPU

The general purpose application of GPUs proved to be successful in multiple areas. An
increasing availability of powerful GPUs such as NVIDIA Tesla allows for a typical PC
workstation to solve complex computational problems; therefore the utilization of GPU in
UGENE Genome Aligner was a task of high importance for us. We started analyzing the
possibility to use GPU for searching the seed portions of short reads in the suffix array. The
search procedure typically takes from 0.3 to 0.6 of the entire alignment time, the result being a
significant increase in performance.

The suffix array in our case is represented as a sorted array of integer values therefore the search
task can be described as a problem of locating a position of a specific item in a sorted array.
Since we are searching for multiple independent items it is possible to solve this problem by
applying binary search algorithm in parallel. There were some recent attempts to implement
parallel binary search on GPU which resulted in significant performance increase. For example,
the so called “p-ary” search, discussed in the paper by T. Kaldewey and others [9], achieved 8x
speedup over the CPU binary search.

Taking into account existing investigations we implemented parallel binary search procedure
using both NVIDIA CUDA toolkit [10] and OpenCL [11]. Performance tests showed the
expected 8x speedup over CPU. It is worth mentioning that our implementation includes a
number of optimizations, which are targeted on minimizing global GPU memory access.

Results

The relative performance of the GPU-accelerated Genome Aligner was measured by comparison
with the CPU version of the algorithm. We measured the runtime of search in the suffix array
procedure and total application runtime separately. Our test stand was based on Intel Core2Quad
Q9550 processor, 8 GB RAM with NVIDIA Tesla 1060 on board. The CPU-version of the
algorithm made use of multiple processor cores implementing several binary searches in parallel
similar to the GPU-version.

In our performance tests we used synthetic reads generated from the complete genomes of
Anopheles gambiae (GenbankID: NC_004818.2) and Mouse Genome Chromosome 1 and 2
(AC157543.8). For each reference sequence we simulated 2000000-length sets of short reads.
Each set included only reads with the size of 35 bp, 50 bp and 100 bp correspondingly (Table 2).

Species
Общее время
сборки для
CPU, сек

CPU-time
(search in suffix

array), сек

Overall
alignment GPU-

time, sec

GPU- time (search
in suffix array),

sec

Anopheles
gambiae

112 45 85 8

Mus Musculus
Chromosome 1

164 50 103 8

Mus Musculus
Chromosome 2

181 68 110 13

Table 2 Performance Comparison of CPU and GPU implementations of the Genome Aligner. Test machine
configuration: Intel Q9550 2.7 GHz, 8 Gb Ram, NVidia Tesla C1060. The Genome Aligner had the following

parameters: --best --n-mis=3.

In each performance test the GPU-optimized search procedure showed a significant speedup
over the CPU version. However in general the GPU-optimized Genome Aligner was only ~1.5x
faster than the CPU version of the algorithm. The whole alignment procedure has a number of
other steps other than the search procedure: building a suffix array, performing a refining
comparison, working with I/O, and each of these steps can require a significant amount of time.
We strongly believe that there is potential for further performance improvement. First, our
implementation of parallel binary search on GPU can be further optimized in order to assure that
global GPU memory accesses are coalesced etc. Second, we are planning to carefully analyze
and rework the algorithm in order to port the refining comparison step and building a suffix array
step to GPU and also minimize the I/O impact.

The current implementation of the GPU-accelerated Genome Aligner is fully integrated into
UGENE and freely available for download. Even in its current implementation the GPU-
optimized Genome Aligner is very efficient when performing alignment of large NGS datasets.
The integration of the Genome Aligner allows it to be easily included into any research pipeline
provided by UGENE framework and makes it available for end-user without any additional
efforts.

References

1. Unipro UGENE (http://ugene.unipro.ru)
2. Langmead B, Trapnell C, Pop M, Salzberg SL. ”Ultrafast and memory-efficient

alignment of short DNA sequences to the human genome.” Genome Biol 2009 10:R25.
3. Homer N, Merriman B, Nelson SF. “BFAST: an alignment tool for large scale genome

resequencing.” PLoS One. 2009 Nov 11;4(11):e7767.
4. Li R, Yu C, Li Y, Lam TW, Yiu SM, Kristiansen K, Wang J. “SOAP2: an improved

ultrafast tool for short read alignment.”, Bioinformatics. 2009 Aug 1;25(15):1966-7.
Epub 2009 Jun 3.

5. Langmead B, Schatz MC, Lin J, Pop M, Salzberg SL. “Searching for SNPs with cloud
computing.”, Genome Biol. 2009;10(11):R134. Epub 2009 Nov 20.

6. Schatz M, Trapnell C, Delcher A, Varshney A “High-throughput sequence alignment
using Graphics Processing Units”, BMC Bioinformatics 2007, 8:474

7. Gharaibeh A., Ripeanu M. "Size Matters: Space/Time Tradeoffs to Improve GPGPU
Applications Performance, , IEEE/ACM International Conference for High Performance
Computing, Networking, Storage, and Analysis (SC 2010), New Orleans, LA, November
2010.

8. Gusfield D. “Algorithms on Strings, Trees and Sequences: Computer Science and
Computational Biology”, Cambridge University Press, 1997

9. Kaldewey T., Hagen J, Di Blas A., Sedlar E. “Parallel Search On Video Cards”, Oracle
Server Technologies - Special Projects

10. NVIDIA CUDA toolkit, http://www.nvidia.com/object/cuda_home_new.html
11. OpenCL, http://www.khronos.org/opencl/
12. NCBI Short Reads archive, http://www.ncbi.nlm.nih.gov/sra

