De Novo Assembly and Contigs Classification

⚠️ Attention: The Metagenomics workflow was available before UGENE v40.

This workflow takes FASTQ files with metagenomic NGS reads as input and processes them as follows:

  • Improves read quality with Trimmomatic
  • Provides quality reports using FastQC
  • Performs de novo assembly with SPAdes
  • Classifies contigs using Kraken
  • Generates a general classification report

How to Use This Sample

If you’re new to UGENE workflows, check the How to Use Sample Workflows section.


Workflow Sample Location

The sample “De Novo Assembly and Contigs Classification” is in the “NGS” section of the Workflow Designer samples.


Workflow Images

Single-End Reads

Paired-End Reads


Workflow Wizard Overview

The wizard has 5 pages:


1. Input Data

Set the FASTQ input files.


2. Trimmomatic Settings

Click the Add new step button to configure trimming steps.

Trimming steps include:

  • ILLUMINACLIP
  • SLIDINGWINDOW
  • LEADING
  • TRAILING
  • CROP
  • HEADCROP
  • MINLEN
  • AVGQUAL
  • MAXINFO
  • TOPHRED33
  • TOPHRED64

(See original documentation for parameter details.)


3. SPAdes Settings

You can modify default SPAdes parameters.

SPAdes Parameters

ParameterDescription
Dataset typeInput dataset type:
- standard isolate (default)
- multiple displacement amplification (--sc)
Running modeChoose mode:
- Full (error correction + assembly)
- --only-assembler
- --only-error-correction
Error correctionUses BayesHammer for Illumina, IonHammer for IonTorrent.
⚠️ Skip for reads without quality (e.g., FASTA).
K-mersSet k-mer sizes using -k. Auto-selected if omitted.

4. Kraken Settings

Configure classification parameters.

Kraken Parameters

ParameterDescription
DatabasePath to the Kraken database directory
Quick operationStop classification early if hit count exceeds threshold
Minimum number of hitsNumber of hits required before stopping classification

5. Output Files

Choose where to store the output files.